Несколько исторических парадоксов:

252. Парадокс Протагора.
   Один из самых древних парадоксов рассказывает об учителе греческого права Протагоре, взявшем в ученики бедного, но весьма способного юношу и согласившемся учить его бесплатно при условии, что когда тот закончит курс обучения и выиграет свой первый судебный процесс, то уплатит Протагору определенную сумму. Ученик принял условия Протагора, но, завершив свое образование, не стал выступать в суде. По прошествии некоторого времени Протагор подал на своего ученика в суд, требуя уплаты обещанной ему суммы. Вот какие показания дали Протагор и его ученик на суде.
   Ученик. Если я выиграю этот процесс, то по определению я не должен буду платить Протагору ничего. Если же я проиграю этот процесс, то тем самым я не выиграю свой первый судебный процесс, а по уговору я должен платить Протагору лишь после того, как выиграю свой первый судебный процесс. Следовательно, выиграю я этот судебный процесс или проиграю, платить мне все равно не придется.
   Протагор. Если мой бывший ученик проиграет этот судебный процесс, то по определению он должен будет уплатить мне соответствующую сумму (ведь именно ради уплаты причитающейся мне суммы я и возбудил процесс). Если же мой бывший ученик выиграет этот судебный процесс, то тем самым он выиграет свой первый судебный процесс и по уговору должен будет уплатить мне долг. Следовательно, выиграет он этот судебный процесс или проиграет, но платить ему придется все равно.

253. Парадокс лжеца.
   Так называемый, "парадокс лжеца", или парадокс Эпименида, в действительности является родоначальником целого семейства парадоксов определенного типа, известных под названием парадоксов лжеца (звучит как тавтология, не так ли?). В своем первоначальном варианте парадокс повествует о некоем критянине по имени Эпименид, высказавшем утверждение "все критяне лжецы". Только вот беда: сам Эпименид тоже критянин! Получается, что если Эпименид говорит правду, то он лжец, значит, он возводит напраслину на своих земляков и на себя самого, то есть говорит неправду. Как же все-таки: ложно или истинно высказывание, порочащее обитателей острова - колыбели человеческой культуры?
   В улучшенном варианте парадокса лжеца говорится о человеке, высказывающем утверждение "я лгу". Лжет он или нет?
   Следующий вариант улучшенного варианта мы будем называть в дальнейшем парадоксом лжеца. Рассмотрим утверждение:
   Это утверждение ложно.
   Истинно оно или ложно? Если оно ложно, то оно истинно. Если оно истинно, то оно ложно.

254. Парадокс Журдэна.
   Следующий вариант парадокса лжеца был впервые предложен в 1913 г. английским математиком П.Э.Б. Журдэном. Иногда его называют "парадокс Журдэна с карточкой". Представьте себе карточку, на одной стороне которой написано:
(1) Утверждение на другой стороне этой карточка истинно.
   Перевернув карточку на другую сторону, вы увидите надпись:
(2) Утверждение на другой стороне этой карточки ложно.
   Парадокс заключается в следующем. Если первое утверждение истинно, то второе утверждение истинно (так как в первом утверждении говорится, что второе утверждение истинно). Следовательно, первое утверждение ложно (так как во втором утверждении говорится, что первое утверждение ложно). Если же первое утверждение ложно, то второе утверждение ложно. Следовательно, первое утверждение не ложно, а истинно. Таким образом, первое утверждение истинно в том и только в том случае, если оно ложно, а это невозможно.

255. Парадокс из романа "Дон-Кихот"
Некое поместье делится на две половины многоводною рекою. Через реку переброшен мост, а поблизости зловеще возвышается виселица. Закон гласит: "Всяк проходящий по мосту через сию реку долженствует объявить под присягою, куда и зачем он идет; кто скажет правду, тех пропускать беспрепятственно, а кто солжет, тех без всякого снисхождения казнить через повешение".
    И надо же было так случиться, что однажды некий человек, приведенный к присяге, заявил: он-де клянется, что пришел сюда, дабы его... вздернули на эту вот самую виселицу и ни за чем другим. Стоило видеть недоумение судей! В самом деле, если позволить чудаку-незнакомцу следовать дальше, то это будет означать, что он нарушил присягу и согласно закону подлежит казни. С другой стороны, как его повесить? Ведь он клялся, будто только затем и пришел, чтобы его повесили, - стало быть, присяга его не ложна, и на основании этого же самого закона надлежит пропустить его неприкосновенным.

Несколько парадоксальных задач:

256. Утопить или повесить?
   Эта головоломка известна довольно широко. Некто совершил преступление, караемое смертной казнью. На суде ему предоставляется последнее слово. Он должен произнести одно утверждение. Если оно окажется истинным, преступника утопят. Если же оно будет ложным, преступника повесят. Какое утверждение он должен высказать, чтобы привести палачей в полное замешательство?

257. Парадокс цирюльника.
   Приведу еще один хорошо известный парадокс. В небольшом городке цирюльник бреет всех, кто не бреется сам, и не бреет никого из тех, кто бреется сам. Бреет ли цирюльник самого себя? Если цирюльник бреет самого себя, то тем самым он нарушает правило, так как бреет одного из тех, кто бреется сам. Если же цирюльник не бреет самого себя, то он опять-таки нарушает правило, так как не бреет одного из тех, кто не бреется сам. Что делать цирюльнику?

258. Что вы на это скажете?
   Один из островов рыцарей и лжецов малонаселен: на нем живут только два туземца A и B. Они высказали следующие утверждения:
A: B - лжец.
B: A - рыцарь.
   Кто такой A: рыцарь или лжец? A что можно сказать о B?

Ответы:
256. Преступник должен сказать: "Я буду повешен".

257. Ничего: существование такого цирюльника логически невозможно.

258. В ответ на вопросы задачи вам следует заявить, что автор опять лжет! Описанная мною ситуация невозможна. В действительности эта задача представляет собой не что иное, как парадокс Журдэна в слегка "загримированном" виде (см. задачу 254).
   Если бы A был рыцарем, то B в действительности был бы рыцарем. Следовательно, A в действительности не рыцарь. Если бы A был лжецом, то B в действительности был бы не лжецом, а рыцарем. Значит, его утверждение было бы истинным, и A был бы рыцарем. Следовательно, A не может быть ни рыцарем, ни лжецом, так как и в том и в другом случае мы приходим к противоречию.

Комментарии (6)

Ассаи 17. января, 2010.г.  
 0 0
парадокс лжеца ))
а теперь своими словами, что ты этим хотел подчеркнуть?
avenzio 17. января, 2010.г.  
 0 0
Блог не для тупых, сорре(

парадокс лжеца ))
Gladius 17. января, 2010.г.  
 0 0
Слыхали, слыхали про то.
Ассаи 17. января, 2010.г.  
 0 0
как бы знаем. И про парадокс критянина тоже.
нет, просто я про то, что многие ленятся читать до конца исходя из "непонятного" начала. Но ведь, в самом деле, интересно
pilum_1 17. января, 2010.г.  
 0 0
как бы знаем. И про парадокс критянина тоже.
Ассаи 17. января, 2010.г.  
 0 0
Блог не для тупых, сорре(
Вникать надо; хотя бы знать значение слова - парадокс  
Похожие записи

Ассаи